Natural-abundance ¹⁵N cross-polarization/ magic-angle spinning nuclear magnetic resonance study of urea-formaldehyde resins

I-Ssuer Chuang and Gary E. Maciel*

Department of Chemistry, Colorado State University, Fort Collins, CO 80523-0002, USA (Received 14 September 1993)

High-quality natural-abundance ¹⁵N cross-polarization/magic-angle spinning (c.p.-m.a.s.) spectra of urea-formaldehyde (UF) resins were obtained by employing a large-volume (2.5 cm³) magic-angle spinning (m.a.s.) rotor. 15N c.p.-m.a.s. nuclear magnetic resonance (n.m.r.) spectroscopy can clearly distinguish dimethylene ether linkages from methylol groups for UF resins prepared under neutral or basic conditions, a weak point in ¹³C c.p.-m.a.s. strategies because of ¹⁴N broadening effects, and can detect the existence of tertiary amides and unreacted primary amides in UF resins. ¹⁵N c.p.-m.a.s. n.m.r. also establishes the fact that there are methylol aggregates that are spatially separated from some other structural moieties in UF resins and that the domain size of methylol aggregates diminishes with the concentration of methylol groups in UF resins. ¹⁵N c.p.-m.a.s. results also indicate that the formation of dimethylene ether linkages is least favourable at pH 9 and most favourable at pH 12 among the three pH values 7, 9 and 12.

(Keywords: urea-formaldehyde resins; ¹⁵N c.p.-m.a.s. n.m.r. spectra; spin diffusion)

INTRODUCTION

Urea-formaldehyde (UF) resins¹ have been used in the technological areas of coatings, adhesives, castings, moulding compounds and textile auxiliaries. UF resins are especially important as adhesives for various wood products. The reactions between formaldehyde and urea, or other starting materials that formally 'contain' them, and the structures of the resins formed have been investigated by various methods¹. Among these methods, liquid-sample ¹³C n.m.r. studies²⁻¹¹ have so far provided the most detailed information on the reactions and structures of UF resins that can be dissolved in suitable solvents. However, the structures of insoluble fractions and the nature of the curing processes of insoluble UF resins, which are very important issues concerning the performance characteristics of UF resins, are out of the range of applicability of liquid-sample spectroscopy.

High-resolution solid-state ¹³C n.m.r. techniques that utilize cross-polarization (c.p.)¹² with high-power ¹H decoupling and magic-angle spinning (m.a.s.)¹³ have been shown to be a powerful tool (c.p.-m.a.s.)¹⁴ for elucidating structural details of UF resins 15-18, and for examining the hydrolytic stabilities of various UF resins¹⁹.

Owing to its low natural abundance (0.37%) and low magnetogyric ratio (about 0.4 times that of ¹³C), ¹⁵N is in most cases not suitable for c.p.-m.a.s. studies unless ¹⁵N-enriched materials are employed²⁰⁻³⁰. However, there are fragmentary recent reports of examples of natural-abundance ¹⁵N c.p.-m.a.s. measurements on some nitrogen-rich samples^{23,30-33}.

The development of large-volume m.a.s. systems in our

*To whom correspondence should be addressed

laboratory^{32,34} has pointed to one avenue for achieving improved signal-to-noise (S/N) ratios in m.a.s. experiments in which sensitivity is a problem, such as naturalabundance ¹⁵N experiments. By using large-volume m.a.s. systems, we have been able to investigate routinely natural-abundance UF resins and resins based on 4,4'-methylenebis(phenyl isocyanate) (MDI)³⁵. In a previous paper²³, we reported the use of ¹⁵N c.p.-m.a.s. techniques to study ¹⁵N-enriched UF resin samples prepared with two different extents of curing, and found that ¹⁵N c.p.-m.a.s. spectra were overall less useful than ¹³C c.p.-m.a.s. spectra in providing structural details for the UF resin studied, even though ¹⁵N data provided a useful information supplement. In this article, we describe the use of a large-volume m.a.s. rotor system for the natural-abundance ¹⁵N c.p.-m.a.s. investigation of a series of systematically synthesized UF resins that were investigated previously by ¹³C c.p.-m.a.s. methods^{16,17}. The ¹⁵N c.p.-m.a.s. results are compared with the previously published ¹³C c.p.-m.a.s. results.

EXPERIMENTAL

Samples

The preparation of solid UF resins from 37% formalin and urea or from a 'N,N'-dimethylolurea reagent' have been described elsewhere 16,17. The formalin reagent contains 37% formaldehyde (by weight), 8% methanol (by weight) and 55% water (by weight). The N,N'dimethylolurea reagent contains 92% (by weight) N,N'dimethylolurea (HOCH₂NHC(O)NHCH₂OH) and 8% (by weight) monomethylolurea (NH₂C(O)NHCH₂OH). The 'equivalent' formaldehyde/urea/water molar ratios (F/U/W) stated in this paper are based on the -CH₂Oand NC(O)N moieties and the H2O formally present in the starting reaction mixture of the UF resin preparations. The solid UF resins are denoted in terms of the F/U/W molar ratios in the starting materials and the pH value of the preparative reaction mixture; e.g. 2.00/1.00/25.0(12) designates a solid UF resin prepared from a mixture with a F/U/W molar ratio of 2.00/1.00/25.0 at pH 12.

N.m.r. measurements

¹⁵N c.p.-m.a.s. n.m.r. spectra were obtained at 20.3 MHz on a home-modified wide-bore Nicolet NT-200 spectrometer. Large-volume (2.5 cm³) m.a.s. spinners of the pencil type from Chemagnetics were used for the sample container. Samples were spun at about 2 kHz at the magic angle. The c.p. contact times and pulsesequence repetition times are indicated below. The $^1H^{-15}N$ dipolar-dephasing $^{36-38}$ ^{15}N c.p.-m.a.s. technique and $^1H^{-1}H$ dipolar dephasing 39 prior to $^1H^{-15}N$ cross-polarization were employed to provide structural information; details are described below. In this article, all ¹⁵N chemical shifts are referenced to liquid NH₃ (at 25°C) at 0 ppm.

RESULTS AND DISCUSSION

Urea has four N-H sites available for interaction with formaldehyde, which in turn has two atomic sites available in the carbonyl group for interaction. The following reactions or combinations of reactions are believed to occur to varying extents in the formation of UF resins1,16:

$$\begin{array}{c} \overset{O}{\sim} \text{N-C-N++} + \text{HOCH}_2\text{OH} \longrightarrow \overset{O}{\sim} \text{N-C-N-CH}_2\text{OH} + \text{H}_2\text{O} \end{array} \tag{1}$$

$$-\gamma \stackrel{Q}{\leftarrow} -\gamma C -\gamma C + 2(OCH_2)_nOH + HOCH_2OH \longrightarrow -\gamma \stackrel{Q}{\leftarrow} -\gamma C -\gamma C + \gamma C + 2(OCH_2)_{n+1}OH + H_2O$$
 (2)

² -
$$^{\text{N-C-}}_{\text{NCH}_2\text{OH}} \longrightarrow ^{\text{N-C-}}_{\text{N-C-NCH}_2\text{OCH}_2} \stackrel{\text{Q}}{\text{N-C-}} \stackrel{\text{N-C-}}{\text{N-C-}} + \text{H}_2\text{O}$$
 (4)

The methylolation reaction (equation (1)) is catalysed by both acids and bases1, as confirmed by a previous ¹³C c.p.-m.a.s. study¹⁶. According to the previous ¹³C c.p.-m.a.s. study of a series of UF resins^{16,17}, the formation of methylene linkages (equation (3)) is catalysed only by acid, at least at room temperature, whereas formation of dimethylene ether linkages (equation (4)) is feasible under both low-pH and high-pH conditions. The reaction products formed from urea and formaldehyde can range from very simple ones (formed mainly under basic pH conditions) to very complicated, widely crosslinked products (formed mainly under acidic conditions). The factors^{1,16,17} that affect the composition of UF products include the concentrations of the main reagents (formaldehyde and urea sources), pH, temperature and duration of reaction. Table 1 lists some possible structural fragments that one might expect to appear in UF resins. The numbering system used here is based on what was used in previous articles 16,17.

Crosslinking is a very important structural element in UF resins. Although ¹³C chemical shifts are sensitive enough to provide some structural information on crosslinking, 15N c.p.-m.a.s. can in principle provide direct evidence of its existence. A nitrogen atom serves as a site for crosslinking (IIB and IIC in Table 1) or crosslinking precursor (IIA in Table 1) if it has no directly attached hydrogen, but is part of a non-crosslinking moiety. The ¹H-¹⁵N dipolar-dephasing c.p.-m.a.s. experiment is a useful means of distinguishing between nitrogen atoms with and without directly attached hydrogen atoms^{23,36-38}. *Figure 1* shows the dipolar-dephasing³⁶⁻³⁸ ¹⁵N c.p.-m.a.s. spectra of UF resin 2.00/1.00/25.0(12) with four different ¹H-¹⁵N dipolardephasing times. Peak positions at 102 and 90 ppm in Figure 1a are assigned to -C(O)NHCH₂OH and -C(O)NHCH₂OCH₂- moieties, respectively; both nitrogen sites have a directly attached proton. Owing to its smaller magnetogyric ratio than that of ¹³C, the ¹⁵N signal of a nitrogen site with a directly attached proton can partially survive a dipolar-dephasing period of up to 50 μ s; a 120 µs dipolar-dephasing period is required in order to distinguish clearly a hydrogen-bearing 15N from a non-hydrogen-bearing ¹⁵N, as indicated by the surviving behaviour at different dipolar-dephasing times of both peaks in Figure 1. Figure 2 indicates that the 110 and 118 ppm peaks in the ¹⁵N c.p.-m.a.s. spectra of UF resin 2.00/1.00/25.0(1) can survive a 120 μ s dipolar-dephasing time; therefore, 110 and 118 ppm peaks are assigned to tertiary amides, i.e. crosslinking sites (IIBC, d: 110 ppm) or crosslinking precursor sites (IIA, d: 118 ppm). When a tertiary amide is attached to methylene linkages (II, III) or dimethylene ether linkages (XI), it is a crosslinking site. If a tertiary amide is attached to at least one methylol group (V), it is not a crosslinking site.

Cross-polarization from ¹H to ¹⁵N depends on the strength of the ¹H-¹⁵N dipolar interaction; the dependence of the cross-polarization rate constant on the inverse sixth power of ¹H-¹⁵N internuclear distance⁴⁰⁻⁴⁵ provides another possible means of distinguishing tertiary amides from primary amides or from secondary amides. The variable-contact-time (VCT) experiment, in which several c.p. contact times are used in a series of ¹⁵N c.p.-m.a.s. experiments, is used to determine the cross-polarization rate constant. Figure 3 shows the ¹⁵N c.p.-m.a.s. spectra of UF resin 2.00/1.00/4.96(3) obtained in a variablecontact-time experiment with nine different c.p. contact times ranging from 0.1 to 12 ms. The 110 ppm (IIBC, d) and 118 ppm (IIA, d) peaks in Figure 3 are assigned to tertiary amides because of the slow build-up of 15N polarization.

Even though the ¹H-¹⁵N dipolar-dephasing experiment and variable-contact-time experiment provide direct evidence for the existence of tertiary amides, structural details of these tertiary amides are less obvious in the ¹⁵N c.p.-m.a.s. spectra than in the corresponding ¹³C c.p.-m.a.s. spectra ^{16,17}. These ¹⁵N experiments can provide evidence for the existence of tertiary amides, whereas ¹³C c.p.-m.a.s. spectra can supplement this evidence with better structural details of these tertiary amides. ¹⁵N c.p.-m.a.s. spectra (not shown here) of several UF resins prepared under acidic conditions merely confirm the trends observed by ¹³C c.p.-m.a.s., but without adding structural detail; therefore, chemical shift

Table 1 15N n.m.r. chemical shifts of some of the most important structural fragments that may exist in the UF resins discussed in this article

Structural fragment ^a	Name of group	Position label	15N chemical shift (ppm)
Q c C Q -C-NH-CH ₂ -NH-C-	Methylene linkage	Ic	94
ode -C-N-CH ₂ -NH-C- CH ₂ -R	Methylene linkage		
A: R ≡ OH	Crosslinking precursor	IIA, d IIA, e	118 94
Q B: R ≡ NH-C-	Crosslinking methylene	IIB, d IIB, e	110 94
C: R = OCH ₂ -N-C-	Crosslinking methylene	IIC, d IIC, e	110 94
O C C O -C-N-CH ₂ -N-C- CH ₂ - CH ₂ -	Methylene linkage (crosslinking)	IIIc	110
o c -C-nh-ch ₂ -oн	Methylol	IVc	102
O c -C-N-CH ₂ OH CH ₂ -R			
A: (R = N-C- or OCH ₂ -N-C-)	Pendent methylol	VA, c	118
B: R≡OH	Geminate methylol	VB, c	118
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dimethylene ether linkage	Xe	90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dimethylene ether linkage	XIf	110

[&]quot;Structure indicated by Roman numeral (and, in some cases, upper-case letter, e.g. IIA), position by letter (consistent with earlier papers)16,17

details of the ¹⁵N c.p.-m.a.s. spectra of UF resins prepared under acidic conditions will not be discussed further in

Another important structural element in UF resins, besides crosslinking, is the existence of unreacted urea sites, i.e. primary amide sites. Because the ¹³C chemical shifts of carbonyl groups in solid UF resins are quite insensitive to their environment16,17 (relative to the experimental linewidth) and because of the associated difficulty in determining the peak intensity assigned to a specific type of carbonyl group, it is not possible to detect or to determine the quantity of primary amides by ¹³C c.p.-m.a.s. Figure 4 shows the ¹⁵N c.p.-m.a.s. spectrum of the solid 'N,N'-dimethylolurea reagent'. In this spectrum the 10% mole fraction of monomethylolurea in this 'N,N'-dimethylolurea reagent' is responsible for the roughly 5% intensity at 76 ppm in the spectrum; the intensity of this 76 ppm peak can be used as an indicator of the extent of unreacted amides (primary amides) in a UF resin.

Previous ¹³C c.p.-m.a.s. studies of UF resins prepared under neutral or basic conditions indicated 16,17 that the main constituents of the reaction mixture are methylols (IV) and dimethylene ether linkages (X). Unfortunately, owing to the residual nuclear electric quadrupolar effect⁴⁶⁻⁵¹ of ¹⁴N on the ¹³C spectrum through the ¹³C-¹⁴N dipolar interaction, the ¹³C c.p.-m.a.s. peaks assigned to methylols (IV) at about 65 ppm and a carbonyl group at 160 ppm show splittings, and the higher-frequency component peak of the methylol multiplet overlaps with the 69 ppm peak assigned to dimethylene ether linkages (X). Hence, in previous studies 16,17 we could only speculate on the influence of pH and reagent concentration on the structures of the UF resin prepared under neutral or basic conditions. Figure 5 shows the ¹⁵N c.p.-m.a.s. spectrum of UF resin 2.00/1.00/25.0(12). In this spectrum, the 102 ppm peak assigned to secondary amides attached to methylols (IVc) is well separated from the 90 ppm peak assigned to secondary amides attached to dimethylene ether linkages (Xe) in the ¹⁵N c.p.-m.a.s. spectrum; therefore, ¹⁵N c.p.-m.a.s. can be used to quantify the methylols (IV) and dimethylene linkages (X) in a UF resin sample. The 78 ppm peak in the spectrum of Figure 5 indicates the existence of some unreacted primary amide (vide supra).

The reaction mixture leading to resin 1.00/1.00/12.5(9)

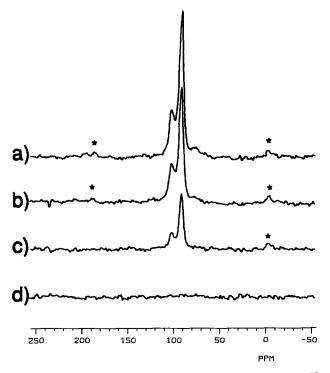


Figure 1 The 20.3 MHz natural-abundance dipolar-dephasing ¹⁵N c.p.-m.a.s. n.m.r. spectra of a UF resin prepared with a F/U/W molar ratio of 2.00/1.00/25.0 at pH 12. C.p. contact time=1 ms; repetition time = 5 s; number of accumulations = 2120. The dipolar-dephasing time is (a) $0 \mu s$, (b) $20 \mu s$, (c) $50 \mu s$, (d) $120 \mu s$. Spinning sidebands are denoted by asterisks

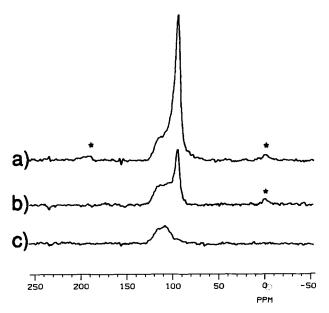


Figure 2 The 20.3 MHz natural-abundance dipolar-dephasing ¹⁵N c.p.-m.a.s. n.m.r. spectra of a UF resin prepared with a F/U/W molar ratio of 2.00/1.00/25.0 at pH 1. C.p. contact time=3 ms; repetition time = 1 s; number of accumulations = 20000. The dipolar-dephasing time is (a) 0 μ s, (b) 50 μ s, (c) 120 μ s. Spinning sidebands are indicated by asterisks

remained a clear solution, even after 12 h at 23°C. The UF resin sample designated 1.00/1.00/12.5(9) was obtained by vacuum drying of the clear solution at pH 9 and -5° C. Figure 6a indicates that this UF resin has N,N'-dimethylolurea (102 ppm)²³ as its major constituent, with some monomethylolurea (102 and 78 ppm)²³ and/or urea (78 ppm)²³ as a minor constituent.

In a different procedure, the reaction mixture with a F/U/W molar ratio of 1.00/1.00/12.5 at pH 9 was neutralized with a 0.1 M aqueous phosphoric acid solution to pH 7 after a 12 h reaction period at 23°C and then vacuum dried at -5° C; this solid UF resin is designated 1.00/1.00/12.5(9/7), and its ^{15}N c.p.-m.a.s. spectrum is shown in Figure 6b. The main differences between the spectra in Figures 6a and 6b are the smaller relative intensity at 102 ppm and the appearance of peaks at 95 and 90 ppm in Figure 6b. During neutralization of the reaction mixture with a F/U/W molar ratio of 1.00/1.00/12.5 from pH 9 to pH 7, some portion of the solution was briefly under acidic conditions; therefore,

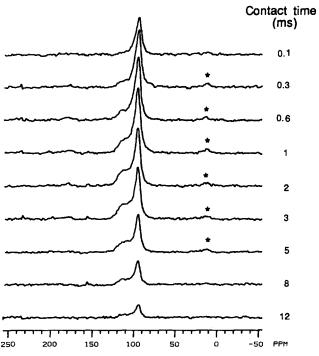


Figure 3 The 20.3 MHz natural-abundance variable-contact-time ¹⁵N c.p.-m.a.s. n.m.r. spectra of a UF resin prepared with a F/U/W molar ratio of 2.00/1.00/4.96 at pH 3. C.p. contact times are indicated with spectra. Repetition time = 1 s; number of accumulations = 5000. Spinning sidebands are indicated by asterisks

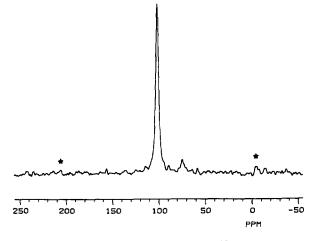


Figure 4 The 20.3 MHz natural-abundance ¹⁵N c.p.-m.a.s. n.m.r. spectrum of 'N,N'-dimethylolurea reagent' (see text). C.p. contact time = 1 ms; repetition time = 30 s; number of accumulations = 1352. Spinning sidebands are indicated by asterisks

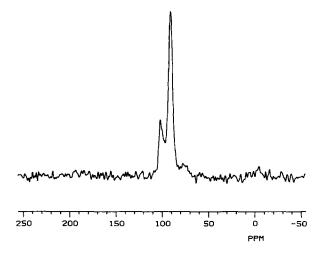


Figure 5 The 20.3 MHz natural-abundance ¹⁵N c.p.-m.a.s. n.m.r. spectrum of a UF resin prepared with a F/U/W molar ratio of 2.00/1.00/25.0 at pH 12. C.p. contact time = 1 ms; repetition time = 30 s; number of accumulations = 400

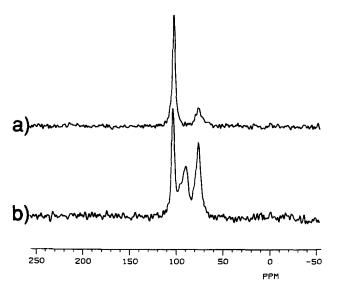


Figure 6 The 20.3 MHz natural-abundance ¹⁵N c.p.-m.a.s. n.m.r. spectra of UF resin prepared with a F/U/W molar ratio of 1.00/1.00/12.5 at pH 9. UF resin solids were obtained by: (a) vacuum drying at 10^{-2} Torr and -5° C the clear 1.00/1.00/12.5 solution at pH 9 (1.00/1.00/1.00)12.5(9)); (b) vacuum drying at 10^{-2} Torr and --5°C the clear 1.00/1.00/12.5 solution after neutralization to pH 7 (1.00/1.00/12.5(9/7)). C.p. contact time = 1 ms; repetition time = 30 s

formation of methylene linkages (I, as indicated by the 94 ppm peak in the ¹⁵N c.p.-m.a.s. spectrum) and dimethylene ether linkages (X, as indicated by the 90 ppm peak in the 15N c.p.-m.a.s. spectrum) apparently occurred in this acidic regime. Furthermore, the formation of dimethylene ether linkages (vide infra) is more feasible at pH 7 than at pH 9 during the vacuum drying period. In a previous article¹⁶, we showed that bringing the UF reaction mixture to pH 7 and -5° C did not quench methylolation (equation (1)). The results of Figure 6 indicate that the neutralization must be executed extremely carefully, if one wishes to avoid the faulty impression that methylene linkages (I) can be formed under neutral or basic conditions.

It is interesting to see what kinds of distribution of methylene linkages (I) and dimethylene ether linkages (X) are in UF resin 1.00/1.00/12.5(9/7). Figure 7 shows ¹⁵N

c.p.-m.a.s. spectra of this resin taken at two different repetition rates, 1 s (Figure 7a) and 30 s (Figure 7b). These two spectra indicate that protons that contribute via cross-polarization to ¹⁵N peaks at 90 ppm (site Xe) and 94 ppm (Ic) have about the same $T_1^{\rm H}$ value (~ 2 s), and protons generating cross-polarized $^{15}{\rm N}$ magnetization for peaks at 78 ppm (-C(O)NH₂) and 102 ppm (IVc) have about the same T_1 value (~8 s). Clearly, ${}^1H_{-}^1H$ spin diffusion between these two proton sets with different T_1 values is too slow to yield a uniform T_1 .

In order to investigate the basis for this inefficient ¹H-¹H spin diffusion, a previously reported technique³⁹ was utilized. In this technique (shown in Figure 8), a $^{1}H^{-1}H$ dipolar-dephasing period (2 τ) is introduced prior to ${}^{1}H \rightarrow {}^{15}N$ c.p. to eliminate magnetization due to protons that experience strong ¹H-¹H dipolar interactions; the magnetization of those protons with weak ¹H-¹H dipolar interactions is still available for c.p. Figure 9 shows the ¹⁵N c.p.-m.a.s. spectrum obtained on UF resin 1.00/1.00/12.5(9/7), using a 40 μ s $^{1}H^{-1}H$ dipolar-dephasing period prior to $^{1}H^{-15}N$ c.p. Obviously, $^{1}H^{-1}H$ spin diffusion is sufficiently efficient to dephase almost all the ${}^{1}H$ polarization during the 40 μ s ${}^{1}H^{-1}H$ dipolar-dephasing period. Therefore, ¹H-¹H spin diffusion is efficient within each proton set and the cause of the inefficient ¹H-¹H spin diffusion between two proton sets

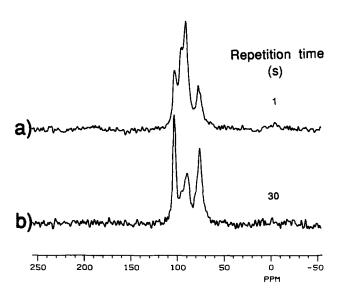


Figure 7 The 20.3 MHz natural-abundance ¹⁵N c.p.-m.a.s. n.m.r. spectra of UF resin 1.00/1.00/12.5(9/7) (cf. Figure 6b) taken with two different repetition times; (a) 1 s, 83 600 accumulations and (b) 30 s, 2656 accumulations. C.p. contact time = 1 ms

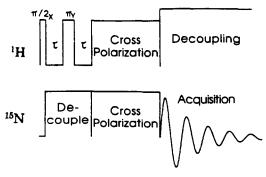
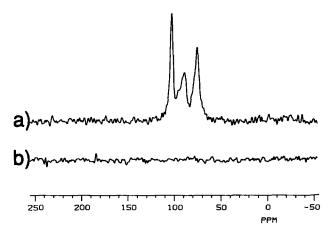



Figure 8 The ¹⁵N c.p.-m.a.s. n.m.r. experiment with ¹H-¹H dipolar dephasing prior to ¹H→¹⁵N cross-polarization

The 20.3 MHz natural-abundance ¹⁵N c.p.-m.a.s. n.m.r. spectra of UF resin 1.00/1.00/12.5(9/7): (a) without ¹H-¹H dipolar dephasing; (b) with a ${}^{1}H-{}^{1}H$ dipolar-dephasing time of 40 μ s prior to ¹H→¹⁵N cross-polarization. C.p. contact time=1 ms; repetition time = 30 s; number of accumulations = 2656

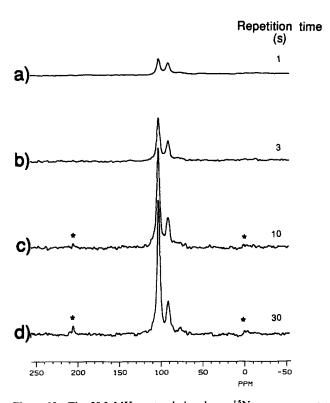


Figure 10 The 20.3 MHz natural-abundance ¹⁵N c.p.-m.a.s. n.m.r. spectra of a UF resin prepared with a F/U/W molar ratio of 2.00/1.00/4.96 at pH 7, obtained with four different repetition times: (a) 1 s, 18 600 accumulations; (b) 3 s, 3000 accumulations; (c) 10 s, 1280 accumulations; (d) 30 s, 1280 accumulations. All spectra are scaled to an equivalent number of accumulations (hence, different noise levels). Spinning sidebands are indicated by asterisks

with different T_1 values must be the spatial segregation of methylols (IV) (and/or -C(O)NH₂ moieties) from methylene linkages (I) and dimethylene ether linkages (X). From the ¹H-¹H dipolar-dephasing results described here, we estimate that $T_2^{\rm H}$ is shorter than 40 μ s; with such a small $T_2^{\rm H}$ value, the $^1{\rm H}{^{-1}{\rm H}}$ spin-diffusion rate should not be affected by m.a.s. at a 2 kHz rate.

According to McBrierty and coworkers⁵², the rootmean-square diffusive path length $\langle r^2 \rangle^{1/2}$ can be expressed as:

$$\langle r^2 \rangle^{1/2} = (6D\tau)^{1/2}$$
 (6)

where the spin-diffusion coefficient D for protons is typically 10^{-12} cm² s⁻¹ and τ is the time over which proton spin diffusion produces a universal relaxation time

The results displayed in Figure 7 show that the T_1^H values of at least some of the protons responsible for ${}^{1}\text{H} \rightarrow {}^{15}\text{N}$ c.p. are 2 s and 8 s. Hence, the τ value for ¹H-¹H spin diffusion among those protons must be greater than 2 s. With a spin-diffusion rate between proton sets with different $T_1^{\rm H}$ values less than 0.5 s⁻¹, the domain size of methylol aggregates is estimated to be larger than

Figure 10 shows ¹⁵N c.p.-m.a.s. spectra of UF resin 2.00/1.00/4.96(7) taken with four different repetition times: 1 s, 3 s, 10 s and 30 s. From these spectra we derived the following rough estimates of $T_1^{\rm H}$: 3.5 s for those protons responsible for cross-polarizing ¹⁵N nuclei yielding the 90 ppm peak (Xe) and 8 s for those protons responsible for cross-polarizing ¹⁵N nuclei of the 102 ppm peak (IVc). Again, spatial segregation of methylols (IV) from dimethylene ether linkages (X) is the cause of this difference in proton T_1 values. Via such differences in T_1^H values, we observed several UF resin samples that display methylol moieties or urea units that are spatially segregated from other components, such as methylene linkages or dimethylene ether linkages. A common spectral feature that is prominent in the 15N c.p.-m.a.s. spectra of all the UF resin samples that display this kind of spatial segregation in T_1^H behavior is strong intensity at 102 ppm, a peak that arises from secondary amides attached to methylols (IV). The cause of this segregation (micro-phase separation) may be the aggregation of methylol-containing resin units, probably because of hydrogen bonding.

Figure 11 presents ¹⁵N c.p.-m.a.s. spectra of UF resin 2.00/1.00/25.0(12) obtained with three different repetition times (1 s, 3 s and 5 s). From these spectra, we estimate

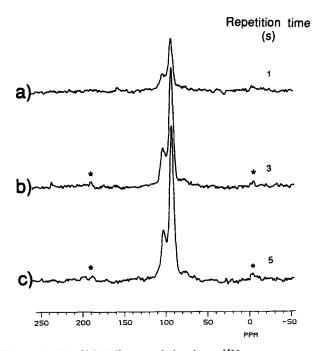


Figure 11 The 20.3 MHz natural-abundance ¹⁵N c.p.-m.a.s. n.m.r. spectra of a UF resin prepared with a F/U/W molar ratio of 2.00/1.00/25.0 at pH 12, obtained with three different repetition times: (a) 1 s; (b) 3 s; (c) 5 s. C.p. contact time=1 ms; number of accumulations = 2120. Spinning sidebands are indicated by asterisks

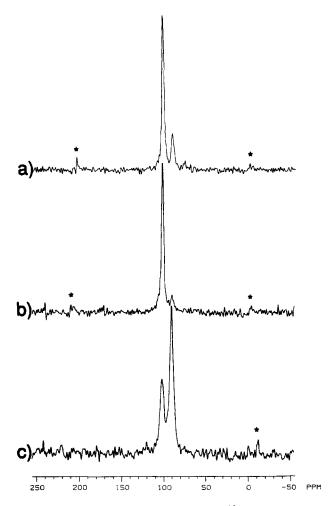


Figure 12 The 20.3 MHz natural-abundance 15 N c.p.-m.a.s. n.m.r. spectra of UF resins prepared with a F/U/W molar ratio of 2.00/1.00/4.96 at three different pH values: (a) pH 7; (b) pH 9; (c) pH 12. C.p. contact time = 1 ms; repetition time = 30 s. Spinning sidebands are indicated by asterisks

that $T_1^{\rm H}$ is 3 s for all protons; it can be seen that the relative intensities of the 90 ppm (Xe) and 102 ppm (IVc) peaks do not change with repetition times. The domain size of methylol aggregates in UF resin 2/1/25.0(12) is apparently small enough (<245 Å, with a τ value less than 1 s in equation (6)) to have sufficiently effective $^1{\rm H}^{-1}{\rm H}$ spin diffusion to produce a universal $T_1^{\rm H}$ value for the entire sample. Thus, when the amount of methylol groups in the resin is smaller, the domain size of methylol aggregates is also smaller. Proton $T_1^{\rm H}$ values of several UF resins prepared under acidic conditions were measured, and a uniform proton $T_1^{\rm H}$ within each sample was found.

Figure 12 shows ¹⁵N c.p.-m.a.s. spectra of UF resin samples 2.00/1.00/4.96(7), 2.00/1.00/4.96(9) and 2.00/1.00/4.96(12) obtained with 30 s repetition times. The proton T_1 value of N,N'-dimethylolurea was measured previously ⁵³ via a ¹³C c.p.-m.a.s. experiment to be 8 s, and it is reasonable to assume that T_1^H values for these UF resins are smaller, because they are generally less rigid and benefit from spin diffusion with protons in relatively mobile segments. Therefore, from the point of view of proton spin-lattice relaxation, we can expect a reliable quantitative relationship between intensities in the ¹⁵N c.p.-m.a.s. spectrum obtained with a 30 s repetition time and concentrations in the sample.

Figure 12 indicates that the formation of dimethylene ether linkages (Xe, 90 ppm; Xf (R = H), 90 ppm) is most favourable at pH 12 and least favourable at pH 9, among the three pH values of this study (pH 7, 9, 12). This observation is somewhat different from what was speculated on the basis of previous ¹³C c.p.-m.a.s. studies ^{16,17}. In that previous work, it was speculated that the formation of dimethylene ether linkages (X) increases with increasing pH values for these three pH values (7, 9, 12). This discrepancy can probably be attributed to the overlap of peaks arising from dimethylene ether linkages (X) and methylol groups (IV) in the ¹³C c.p.-m.a.s. spectra ^{16,17}.

Figure 13 presents the ¹⁵N c.p.-m.a.s. spectra of UF resins 2.00/1.00/4.96(7) and 2.00/1.00/25.0(7). The conclusion from previous ¹³C c.p.-m.a.s. studies ^{16,17} of these resins was that the formation of dimethylene ether linkages (X) increases with reagent dilution under neutral or basic conditions. Figure 13 and the comparison of Figures 5 and 12c confirm that conclusion without question. The reason for this behaviour is presumably that some of the dimethylene ether linkages are formed during the sample-drying (removal of H₂O) period, and the more dilute the solution, the longer it takes to dry, offering more opportunity for the formation of dimethylene ether linkages via equation (4).

CONCLUSIONS

High-quality ¹⁵N c.p.-m.a.s. spectra of UF resins can be obtained with ¹⁵N in natural abundance if one uses a large-volume m.a.s. rotor. UF resins prepared under acidic conditions contain some crosslinking, and ¹⁵N c.p.-m.a.s. spectra can provide direct evidence on the degree of crosslinking or potential crosslinking, and some structural detail by ¹H-¹⁵N dipolar-dephasing or

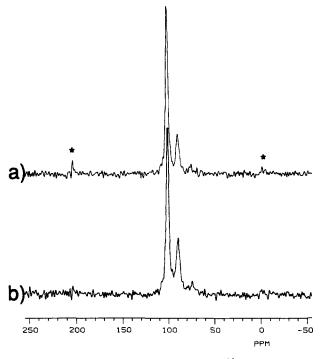


Figure 13 The 20.3 MHz natural-abundance ^{15}N c.p.-m.a.s. n.m.r. spectra of UF resins prepared with (a) F/U/W molar ratio of 2.00/1.00/4.96 and (b) F/U/W molar ratio of 2.00/1.00/25.0 at pH 7. C.p. contact time = 1 ms; repetition time = 30 s. Spinning sidebands are indicated by asterisks

variable-contact-time experiments. However, 13C c.p.m.a.s. spectra can provide better structural details on these UF resins to supplement the ¹⁵N-based information on crosslinking. For UF resins prepared under acidic conditions, ¹⁵N c.p.-m.a.s, spectra confirm the occurrence of tertiary amides and confirm the ¹³C-based relationships between the occurrence of tertiary amides and preparation conditions.

Under neutral or basic conditions, the main constituents of UF resins are N,N'-dimethylolurea, monomethylolurea and dimethylene ether linkages. Owing to effects of the ¹⁴N nuclear quadrupole interaction on ¹³C c.p.-m.a.s. spectra, the ¹³C approach has some limitations in distinguishing among these three types of species. In contrast, ¹⁵N c.p.-m.a.s. spectra provide a distinction between methylols and dimethylene ether linkages, while also clearly identifying unreacted primary amides. Because of the clear interpretation possible for ¹⁵N c.p.-m.a.s. spectra for UF resins prepared under neutral or basic conditions, we are able to observe aggregation of methylol groups via estimation of ¹H-¹H spin-diffusion behaviour. The estimated size of methylol aggregates diminishes with a decrease in the methylol concentration in UF resins. The ¹⁵N n.m.r. data show that the formation of dimethylene ether linkages is least favourable at pH 9 and most favourable at pH 12, among pH 7, 9 and 12. The formation of dimethylene ether linkages is increased with a decrease in reagent concentrations; presumably some of the dimethylene ether linkages are formed during the final drying period.

ACKNOWLEDGEMENT

We gratefully acknowledge partial support of this research by National Science Foundation Grant No. DMR-8418446.

REFERENCES

- Meyer, B. 'Urea-Formaldehyde Resins', Addison-Wesley, Reading, MA, 1979
- de Breet, A. J. J., Dankelman, W., Huysmans, W. G. B. and de Wit, J. Angew. Makromol. Chem. 1977, 62, 7
- Slonim, I. Y., Alekseyeva, S. G., Urman, Y. G., Arshava, B. M., 3 Aksel'rod, B. Y. and Gurman, I. M. Polym. Sci. USSR 1977, 19,
- Slonim, I. Y., Alekseyeva, S. G., Urman, Y. G., Arshava, B. M., Aksel'rod, B. Y. and Smirnova, L. N. Polym. Sci. USSR 1977,
- Ebdon, J. R. and Heaton, P. E. Polymer 1977, 18, 971
- Tomita, B. and Hatono, S. J. Polym. Sci., Polym. Chem. Edn. 1978, 16, 2509
- 7 Slonim, I. Y., Alekseyeva, S. G., Urman, Y. G., Arshava, B. M. and Aksel'rod, B. Y. Polym. Sci. USSR 1979, 20, 1661
- Slonim, I. Y., Alekseyeva, S. G., Urman, Y. G., Arshava, B. M., Aksel'rod, B. Y., Gurman, I. M. and Smirnova, L. N. Polym. Sci. USSR 1979, 20, 2569
- Sebenik, A., Osredkar, U., Zigon, M. and Vizovisek, I. Angew. Makromol. Chem. 1982, 102, 81
- Pasch, H., Dairanieh, I. S. and Al-Tahou, B. J. Polym. Sci., Polym. Chem. Edn 1990, 28, 2049
- Pasch, H., Hovakeemian, G. and Lahalih, S. J. Polym. Sci., 11 Polym. Chem. Edn 1991, 29, 525
- Pines, A., Gibby, M. G. and Waugh, J. S. J. Chem. Phys. 1973, 12
- 13 Andrew, E. R. Prog. Nucl. Magn. Reson. Spectrosc. 1972, 8, Ch. 1

- Schaefer, J. and Stejskal, E. O. J. Am. Chem. Soc. 1976, 98, 1031 14
- Maciel, G. E., Szeverenyi, N. M., Early, T. A. and Myers, G. E. 15 Macromolecules 1983, 16, 598
- 16 Chuang, I. and Maciel, G. E. Macromolecules 1992, 25, 3204
- Chuang, I. and Maciel, G. E. Polymer in press 17
- 18 Jada, S. S. J. Macromol. Sci.-Chem. (A) 1990, 27, 361
- 19 Chuang, I. and Maciel, G. E. J. Appl. Polym. Sci. in press
- Ripmeester, J. A. J. Am. Chem. Soc. 1983, 105, 2925
- Maciel, G. E., Haw, J. F., Chuang, I-S., Hawkins, B. L., Early, T. A., McKay, D. Y. and Petrakis, L. J. Am. Chem. Soc. 1983, 105, 5529
- 22 Haw, J. F., Chuang, I-S., Hawkins, B. L. and Maciel, G. E. J. Am. Chem. Soc. 1983, 105, 7206
- 23 Chuang, I-S., Hawkins, B. L., Maciel, G. E. and Myers, G. E. Macromolecules 1985, 18, 1482
- 24 Hatfield, G. R. and Maciel, G. E. Macromolecules 1987, 20, 608
- Powell, D. G. and Mathias, L. J. Macromolecules 1989, 22, 3812; Powell, D. G. and Mathias, L. J. J. Am. Chem. Soc. 1990, 112, 669; Mathias, L. J., Powell, D. G., Autran, J.-P. and Porter, R. S. Macromolecules 1990, 23, 963
- 26 Hatfield, G. R., Glans, J. H. and Hammond, W. B. Macromolecules 1990, 23, 1654
- 27 Lumsden, M. D., Wu, G., Wasylishen, R. E. and Curtis, R. D. J. Am. Chem. Soc. 1993, 115, 2825
- Opella, S. J., Steward, P. L. and Valentine, K. G. Q. Rev. Biophys. 28 1987, 19, 7
- 29 Duff, D. W. and Maciel, G. E. Macromolecules 1991, 24, 387 and 651
- Witanowski, M., Stefaniak, L. and Webb, G. A. Annu. Rep. NMR 30 Spectrosc. 1993, 25, 1
- 31 Shoji, A., Ozaki, T., Fujito, T., Deguchi, K. and Ando, I. Macromolecules 1987, 20, 2441
- 32 Zhang, M. and Maciel, G. E. Anal. Chem. 1990, 62, 633
- Powell, D. G., Sikes, A. M. and Mathias, L. J. Polymer 1991, 33 32, 2523; Mathias, L. J., Powell, D. G. and Sikes, A. M. Polym. Commun. 1988, 29, 192; Powell, D. G., Sikes, A. M. and Mathias, L. J. Macromolecules 1988, 21, 1533
- Zhang, M. and Maciel, G. E. J. Magn. Reson. 1989, 85, 156 34
- 35 Chuang, I-S., Maciel, G. E. and Yue, H. unpublished results
- 36 Opella, S. J. and Frey, M. H. J. Am. Chem. Soc. 1979, 101, 5854
- Opella, S. J., Frey, M. H. and Cross, T. A. J. Am. Chem. Soc. 37 1979, 101, 5856
- Alemany, L. B., Grant, D. M., Alger, T. D. and Pugmire, R. J. 38 J. Am. Chem. Soc. 1983, 105, 6697
- Chuang, I-S., Kinney, D. R., Bronnimann, C. E., Zeigler, R. C. 39 and Maciel, G. E. J. Phys. Chem. 1992, 96, 4027
- Zumbulyadis, N. and O'Reilly, J. M. Macromolecules 1991, 24, 40
- Mehring, M. 'Principles of High Resolution NMR in Solids', 41 2nd Edn, Springer-Verlag, New York, 1983
- Levitt, M. H., Suter, D. and Ernst, R. R. J. Chem. Phys. 1986, 42 **84**, 4243
- Demco, D. E., Tegenfeldt, J. and Waugh, J. S. Phys. Rev. (B) 43 1975, 11, 4133
- Klein Douwel, C. H., Maas, W. E. J. R., Veeman, W. S., Buning, 44 G. H. W. and Vankan, J. M. J. Macromolecules 1990, 23, 406
- Eijkelenboom, A. P. A. M., Maas, W. E. J. R., Veeman, W. S. 45 Buning, G. H. W. and Vankan, J. M. J. Macromolecules 1992, 25, 4511
- Zumbulyadis, N., Henrichs, P. M. and Young, R. H. J. Chem. 46 Phys. 1981, 75, 1603
- Naito, A., Ganapathy, S. and McDowell, C. A. J. Chem. Phys. 47 1981, 74, 5393
- 48 Hexem, J. G., Frey, M. H. and Opella, S. J. J. Am. Chem. Soc. 1981, 103, 224
- Harris, R. K., Jonsen, P., Packer, K. J. and Campbell, C. Magn. 49 Reson. Chem. 1986, 24, 977
- Olivier, A. C., Frydman, L. and Diaz, L. E. J. Magn. Reson. 50 1987, 75, 50
- 51 Harris, R. K. and Olivieri, A. C. Prog. Nucl. Magn. Reson. Spectrosc. 1992, 24, 435
- McBrierty, V. J. Faraday Disc. Chem. Soc. 1979, 68, 78; Albert, 52 B., Jerome, R., Teyssie, P., Symth, G. and McBrierty, V. J. Macromolecules 1984, 17, 2552
- Maciel, G. E. and Chuang, I. unpublished results